
III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 azugand • EN

Azugand City (azugand)
Author: Andrei Ivan

Developer: Péter Varga

Solution
Consider the graph consisting of the original N vertices and log(max Vi) auxiliary vertices. The auxiliary
vertices correspond to bit positions in the vertex values. We number these vertices starting from N + 1.

Now we add edges to the graph as follows. For each vertex i (1 ≤ i ≤ N) and bit position j, if the bit
at position j in Vi is set (i.e., equals to 1), then we add two directed edges between vertex i and vertex
U = N + 1 + j:

• an edge from i to U with cost 0; and

• an edge from U to i with cost 1.

Next, starting from each auxiliary vertex U , we precompute the minimum distance to each node i using
0-1 BFS. Denote these distances by D[U][i].

For each query (X, Y), we know that the minimum path must include at least one auxiliary vertex. So
it is enough to consider the values D[U][X] + D[U][Y] − 1 for each auxiliary vertex U , and return the
minimum as the answer. Total time complexity is O((N + Q) log(max Vi)).

azugand Author: Andrei Ivan Page 1 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 binaria • EN

Library of Binaria (binaria)
Author: Gabriella Blénessy

Developer: Péter Csorba

Solution
On each shelf, we can store a number of books that is one less than a power of two. This is because:

n∑
i=0

2i = 1 + 2 + 4 + . . . + 2n = 2n+1 − 1.

For topic i we need to find a smallest power of two minus one which is at least Ti. Formally we need to
find n(≥ 1) such that:

2n−1 − 1 < Ti ≤ 2n − 1.

In this case wee need to buy 2n − 1 − Ti extra books for topic i.

Since Ti ≤ 1013 < 244: we can efficiently determine n by checking each power of two up to this limit.
Even calculating powers with (long) pow(2, j) is feasible here.

Note: Precomputing the powers of two and using binary search to find n could speed up the process, but
this isn’t necessary to solve the problem in this case.

binaria Author: Gabriella Blénessy Page 2 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 binarygrid • EN

Binary Grid (binarygrid)
Author: Alexandru Gheorghies

Developer: Bernard Ibrahimcha

Solution
Let f(b0, b1, . . . , bk−1) be the longest contiguous subsequence of equal elements in an array b.

Additionally, let’s define:

• The value of the i-th line as: f(ai,0, ai,1, . . . , ai,m−1);

• The value of the j-th column as: f(a0,j , a1,j , . . . , an−1,j);

A binary matrix is good if and only if the values of its lines and its columns are all strictly less than 3.

Two important observations are that:

1. Toggling a line in the matrix does not change the value of any line.

2. Similarly, toggling a column in the matrix does not change the value of any column.

Therefore, the problem can be split into two independent subproblems:

1. Fixing every line simultaneously by toggling a subset of the columns;

2. Fixing every column simultaneously by toggling a subset of the lines;

The solution for the first subproblem is as described below:

If n ≤ 2, then the answer is 0.

Otherwise, the answer can be computed using dynamic programming:

• dp[j][flag1][flag2] — the smallest number of operations needed to fix every line, if:

• Only the first j columns are considered;

• flag1 represents whether the j − 1-th column was toggled or not.

• flag2 represents whether the j-th column was toggled or not.

Initially:

• dp[1][flag1][flag2] = flag1 + flag2, for all 0 ≤ flag1, f lag2 ≤ 1.

• dp[j][flag1][flag2] = +∞, for all j ̸= 1

For j > 1, the transitions are as follows:

dp[j][flag1][flag2] = flag2 + min(dp[j − 1][0][flag1], dp[j − 1][1][flag1])

binarygrid Author: Alexandru Gheorghies Page 3 of 9

However, if two consecutive states are incompatible (i.e. they create three consecutive equal elements),
then dp[j − 1][0/1][flag1] will be considered +∞ instead of its normal value.

The final answer for this subproblem is equal to ans1 = min{dp[m − 1][flag1][flag2]}.

The answer for the second subproblem ans2 is computed similarly.

The final answer is equal to ans1 + ans2. If this final answer is equal to +∞, then it’s impossible to
obtain a "good" matrix.

Time complexity: O(n · m)

Memory complexity: O(n · m)

binarygrid Author: Alexandru Gheorghies Page 4 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 divisor • EN

Blitz Division (divisor)
Author: Stefan Dascalescu

Developer: Stefan Dascalescu

Solution
In order to solve this problem, we need to find a divisor d such that we can make both A and B multiples
of d with the given K increments. In other words, this means that we want A + B + K to be multiple of
that said d.

A slow solution would be to check all possible ways to distribute the K increments between A and B,
and check for each way what would the GCD of the operation be. However, this would be too slow and
it would not work within the time limits.

As A + B + K must be multiple of the answer, we can start with the divisors of A + B + K and try each
of them, because we know that the answer must be one of these divisors. For a given divisor d, all we
have to do is to find out how much we need to increment A and B to make both of them divisible by d.
If we know rA = A mod d and rB = B mod d, we know that the number of operations required is

(d − rA) mod d + (d − rB) mod d,

unless one or both of the integers is a multiple of d: in that case the number in one or both of the brackets
is zero.

In order to check the divisors, we can apply the standard trial division algorithm, which allows us to find
all divisors of a given number x in O(

√
x). Take note that because A + B + K can go up to 3 · 109, you

might have to deal with overflow related issues, and you need to use the appropriate data types for this
to not cause a problem.

divisor Author: Stefan Dascalescu Page 5 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 excursion • EN

Bus Excursion (excursion)
Author: Gabriella Blénessy

Developer: Péter Csorba

Solution
Given the number of buses and their capacities, we simply need to compare their combined capacity to
the total number of students.

Here is a python solution:
num_buses = int(input ())
bus_capacity = int(input ())
total_students = int(input ())

total_capacity = bus_capacity * num_buses
if total_capacity >= total_students :

print("YES")
else:

print("No")

And the C++ solution as well:
include <iostream >

int main () {
long long num_buses , bus_capacity , total_students ;
std :: cin >> num_buses >> bus_capacity >> total_students ;
if (num_buses * bus_capacity < total_students)

std :: cout << "NO" << std :: endl;
else

std :: cout << "YES" << std :: endl;
}

excursion Author: Gabriella Blénessy Page 6 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 problemsetting • EN

Problem Setting (problemsetting)
Author: Alexandru Gheorghies,
Developer: Alexandru Gheorghies,

Solution
First assume that x is given. We want to answer a simpler question:

Can we organize x rounds?

Luckily greedy algorithm works here: let’s use all the 1-difficulty problems as rating 1 problems, and if
more are needed, we can supplement with the 1.5-difficulty problems. Then, the remaining 1.5-difficulty
problems can be counted as 2-difficulty problems. If more 2-difficulty problems are needed, we can
supplement with the 2.5-difficulty problems. Then, the remaining 2.5-difficulty problems can be counted
as 3-difficulty problems, and so on. If we do not run out of problems at any step: we can organize x
rounds, otherwise we can not.
This can be done in O(N) time.

After that we can use binary search, since if we can organize x rounds then we can organize any fewer
rounds as well. Clearly we can organize 0 rounds, and we can not organize max(ai)+max(bi)+1 rounds.
This binary search part could be implemented like this:

lo = 0
hi = 2*10**9+1
while hi - lo > 1:

mid = (hi + lo) // 2
if we can organize mid rounds :

lo = mid
else:

hi = mid

After this variable lo contains the maximum number of rounds that can be held using the available
problems.
The time complexity is O(N log(2 · 109 + 1)).

problemsetting Author: Alexandru Gheorghies, Page 7 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 walrus • EN

Morse (walrus)
Author: Alexandru Gheorghies,
Developer: Alexandru Gheorghies,

Solution
If multiple sleeping walruses (.) are lined up together, waking up one will trigger a chain reaction that
wakes all the others in the same group. This process stops when it reaches an awake walrus (-) or the
end of the line.

To wake up all the walruses efficiently:

1. Count the Groups: Identify how many separate groups of sleeping walruses (.) there are. You’ll
need to wake up one walrus in each group.

2. Choose the Best Walrus to Wake: Within each group, wake the walrus closest to the middle.
If the group has an even number of walruses, wake any one of the two middle ones. This ensures
the awakening spreads most efficiently.

3. Prioritize Larger Groups: Start waking up groups in descending order of their size. Start the
largest groups first. This greedy strategy minimizes the total time required, as you can only wake
one group per second.

walrus Author: Alexandru Gheorghies, Page 8 of 9

III (((OOO TTT
+++ III))) ;;;

IIOT2025 – Round 1 �����

Online, November 11-12th, 2024 wordle2 • EN

Word by Word (wordle2)
Author: Alexandru Gheorghies

Developer: Alexandru Gheorghies

Solution
The first step in finding the hidden word is to determine the letters of the word. Since we have 26 letters,
we split the alphabet into blocks of 5 characters. We can find whether the hidden word contains the
letters a, b, c, d or e by querying the word abcde. Then, we query for f, g, h, i, and j and so on. Notice
that five queries are enough here as we can skip querying for z, since it is the only letter in the last block.

The next step is to determine the exact position of each letter. Lets say the letters are a, b, c, d, and e.
We can query aaaaa, bbbbb, ccccc and ddddd to learn the exact positions of these four letters. The last
unclaimed position must belong to letter e, allowing us to determine the hidden word in at most 5+4 = 9
queries. Note that the same technique works if the word contains less than five different letters.

wordle2 Author: Alexandru Gheorghies Page 9 of 9

	Azugand City (azugand)
	Library of Binaria (binaria)
	Binary Grid (binarygrid)
	Blitz Division (divisor)
	Bus Excursion (excursion)
	Problem Setting (problemsetting)
	Morse (walrus)
	Word by Word (wordle2)

