
IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 peaks • EN

Tuscan Peaks (peaks)
Author: Tommaso Dossi

Developer: Tommaso Dossi

Solution
Picking one cell, we can look at the cells next to it. (One array contains a, b, c and the other x, y, z.)

a·x b·x c·x

a·y b·y c·y

a·z b·z c·z

b·y is a peak iff

ay < by > cy

bx < by > bz

Since now everything is positive we can divide by y and b:

a < b > c

x < y > z

This means that by is a peak iff b is peak and y is a peak in the corresponding array. So we only need to
find the number of peeks in the given arrays, and the answer is the product. Finding peaks in the given
arrays can be done in O(N + M) time.

peaks Author: Tommaso Dossi Page 1 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 usernames2 • EN

Duplicated Usernames (usernames2)
Author: Alessandro Bortolin

Developer:

Solution
There are several ways of solving this problem, all of them relying on sorting the strings in some way or
another. Probably the easiest approach is to find which strings have the prefix equal to the string we
are given and then we can keep either a frequency array or a set to store the numbers resulted and then
all we have to do is to check what is the smallest number that doesn’t show up in the preferred data
structure, thing which can be done using a simple traversal.

Another idea is to add all strings in a map and start generating potential answers, starting with the one
which doesn’t have any digit and then you can check for each of these strings if they exist in the map or
not. The algorithm would run until you find a string which doesn’t exist in the map, and all you have to
do is to find the required string.

usernames2 Author: Alessandro Bortolin Page 2 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 rectangle • EN

Largest Rectangle (rectangle)
Author: László Nikházy

Developer: László Nikházy

Solution
We need two pairs of equal-length sticks to form a rectangle since the opposite sides of the rectangle
have the same length. These pairs of sticks should have the maximal possible length. There are multiple
possible approaches to solve the problem efficiently, the easiest implementation uses sorting.

Let us sort the array of stick lengths in decreasing order because then the equal elements will be next to
each other and the largest elements will be in the beginning. We search for the first two consecutive equal
elements, which will be one pair of sides for the rectangle and then we continue the search afterwards
again searching for the next two consecutive equal elements, which will be the other pair of sides. If we
cannot find two pairs of equal elements then there is no solution. The complexity is O(n · log n) because
of the sorting.

Another option is to count occurrences of each element using a C++ map or Python dict, or even a
simple array that is as large as the maximal value (which was at most 106). With this approach, we need
some additional casework. There are two major cases: the largest element with multiple occurrences
might occur at least 4 times, and then we should select 4 of that element, or if it occurs 2 or 3 times, we
need the second largest element with at least 2 occurrences. The complexity is O(n + max Si) if we use
a simple array.

rectangle Author: László Nikházy Page 3 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 bracketswap • EN

Swapping Brackets (bracketswap)
Author: Áron Noszály

Developer: Áron Noszály

Solution
The following greedy approach works: swap the first occurrence of “)” with the last occurrence of “(”
until the sequence is balanced. This can be implemented in O(N2) naively. To optimize this approach
let’s think in terms of the usual modifications when dealing with balanced bracket sequences: replace
the opening ones with +1s and the closing one with −1s and consider the prefix sums. The sequence is
not balanced while there’s a negative prefix sum. Notice that the swap we do essentially increases the
current minimum prefix sum by 2 (though we might think the minimum prefix sum after the swap might
be at a different location, but it turns out, it can only happen after the the sequence becomes balanced
and even then, it may only change to the last position of the sequence).

Now our solution is just maintaining the minimum prefix sum and searching for the first “)” and last “(”
in a two-pointer like fashion. The time complexity is linear.

bracketswap Author: Áron Noszály Page 4 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 excellent2 • EN

Excellent Numbers 2 (excellent2)
Author: Péter Gyimesi

Developer: Stefan Dascalescu

Solution
In order to solve the problem we can start with a simple solution that involves combinatorics or DP. One
such approach would be to use DP where dp[i][j] is the number of integers with i digits which only have 1
and 5 and their reminder when dividing by 3 is j. From dp(i,j) we can proceed towards dp(i+1,(j+1) mod 3)
or dp(i+1,(j+2) mod 3) depending on adding a 1 or a 5. The solution would be found in dp(n,0). However,
this solution is O(n) and it is too slow.

However, we can optimize this approach by analyzing the answers we can get for the first few values of
n and there are two possible approaches from here. The first one is to find that if we note with dpn the
answer for a given n, it is equal to dpn−1 + 2 · dpn−2, which allows us to now solve the recurrence with a
rather standard matrix exponentiation, similar to finding the kth Fibonacci integer.

There is also another approach, a pure mathematical one, which reduces to finding closed form formulas
for odd and even n, there are multiple potential formulas which work here but one of them is 2n−2

3 for
odd n and 2n+2

3 for even n.

Both the matrix exponentiation as well as the closed form formula can be done in O(log n) time.

Remark: The recursion dpn+2 = 2n + dpn can be used to get the above closed form using only the
geometric sequence sum formula.

It is easy to see that
(

1 2
1 0

)n

=
(

∗ ∗
∗ dpn

)
.

excellent2 Author: Péter Gyimesi Page 5 of 9

https://codeforces.com/blog/entry/80195


IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 dogtrick • EN

Dog Trick Competition (dogtrick)
Author: Zsolt Németh

Developer: Bogdan Ioan Popa, Casian Patrascanu

Solution
The first important observation is to notice that greedily performing the tricks does not work. For
example, suppose that the dog knows tricks 1, 2, and 3, together with the transitions 1 → 2, 1 → 3,
2 → 2, 3 → 3. Now, for the trick list 1, 2, 3, 2, 3, 3 the greedy solution yields 0 points (performing tricks
1, 2, 2 and then failing to continue), while the optimal solution gives 4 points (performing tricks 1, 3, 3,
and 3).

Therefore, we will utilize dynamic programming. Note that when evaluating Ti (the i-th trick on the
list), we may compute the maximum score that we can achieve starting from trick Ti by the following
recursion:

DPi = max( tr(Ti, Ti+1) · DPi+1, tr(Ti, Ti+2) · DPi+2),

where tr(x, y) is 1 iff trick y can be performed right after trick x, otherwise it is 0.

We could implement this as a simple recursion, but it is too slow to score high. The other observation we
should make is that we can utilize memorization by evaluating the list backward: first, check the last two
tricks on the list and calculate their score value, then iterate towards the start of the list and compute
scores using the above formula. To report the correct result, we must be careful and consider both T0
and T1 as the potential first trick.

Implementation-wise, we may store the DPi scores in a simple array. A possible method to find the
required tr(x, y) values efficiently is to store the transitions in an array of sets, where the i-th set
contains the tricks that we can perform right after trick i. Note that we may reduce the amount of
casework to process the beginning and the end of the list by appending "dummy" tricks that allow all
possible transitions.

dogtrick Author: Zsolt Németh Page 6 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 manymax • EN

Stefan’s New Year’s resolutions (manymax)
Author: Stefan Dascalescu, Ovidiu Rata

Developer: Stefan Dascalescu

Solution
This is a fairly typical data structure problem where we can use multiple solutions in order to make it
work. For the first few subtasks, a variety of solutions including storing prefix products, brute forcing
each value as well as storing a segment tree for maximums are all viable options towards solving these
smaller subtasks.

In order to solve the full problem, we need to be able to answer to the query of finding the kth maximum
fast enough. The first approach would be to build a merge sort tree (segment tree where the entire array
is stored) and then for each query, have a binary search where for each node we find how many values
are greater or equal to a certain value. Unfortunately, the complexity of the query if done in this way
would be O(log3 N) which is too slow. However, we can use this insight to speed up our algorithm.

What if instead of solving a query at a time, we want to solve everything at once? Actually, this is
possible and this allows us to use parallel binary search in order to answer to each query. This is possible
because we are allowed to answer to queries offline and now all we have to do is to sort the queries about
log n times and at each step, we try to find if for each query, the kth maximum is greater or equal than
the value we are seeking to achieve. This is now doable in a very easy manner using a fenwick tree or a
segment tree, the only thing we will have to consider is making sure to avoid overflows and to compute
the mod operations properly as the time limit is rather tight and the mod operations can be very costly.
The final complexity of the query will be O(log2 N) which is good enough for this problem.

There are however alternative solutions that also solve the problem, using either more powerful data
structures such as persistent segment trees, as well as solutions that run in O(

√
n) per query after

running Mo’s algorithm and optimizing the process of computing the answer for queries using another
square root decomposition.

manymax Author: Stefan Dascalescu, Ovidiu Rata Page 7 of 9

https://cp-algorithms.com/data_structures/segment_tree.html##find-the-smallest-number-greater-or-equal-to-a-specified-number-no-modification-queries
https://codeforces.com/blog/entry/45578


IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 carry • EN

Carry Bit (carry)
Author: Filippo Casarin

Developer:

Solution
First observe that whenever we have two bit sequences of length L: it is easy to decide that their sum
fits in L bits or not. Simply find the first position from the left, where they are the same. If these are 1,
then we have overflow. Otherwise (0) independent from the rest of the digits: their sum fits in L digits.
(This can be seen below, where x̄ = 1 − x.) If the ith bits are different for all index, then the sum is
11 . . . 1: fits in L digits.

x0x1 . . . xk1 . . . x0x1 . . . xk0 . . .
x̄0x̄1 . . . x̄k1 . . . x̄0x̄1 . . . x̄k0 . . .

overflow sum fits in L bits

So for each query we only need to find the first equal bits from the left. Instead of this we invert one
of the bit-sequences, and now we need to find the length of the matching sequence from the left. We
can do this by hashing1 and binary search. The prefix hash values can be computed in O(N) time, and
answering all queries cost O(Q log N).

1For details of hashing: look at the solution of periodicwords from the first round.

carry Author: Filippo Casarin Page 8 of 9



IIOT2024 – Round 3 Editorial �����

Online, January 17-18th, 2024 strangeoperation • EN

Strange Operation (strangeoperation)
Author: Péter Gyimesi

Developer: Bence Deák

Solution
Define the function s (which maps an N -sized array to an (N−1)-sized array) as follows:

s(X)[i] := p(i) · (X[i + 1] + X[i]) (i = 0, . . . , N − 2), where p(i) :=
{

1 if i ≡ 0 (mod 2)
−1 if i ≡ 1 (mod 2)

One can see that performing the operation at index i+1 corresponds to swapping s(A)[i] and s(A)[i+1].
Since knowing A[0] and s(A) is sufficient to reconstruct the rest of the elements of A, we only have to
check the validity of s(B), that is, whether s(B) is a permutation of s(A). In other words, a necessary
and sufficient condition for the validity of B is:

A[0] = B[0] and s(A) is a permutation of s(B)

This can be checked easily in O(N log N) (e.g. by sorting or using std::map).

The minimum number of swaps required to transform s(A) into s(B) is a known problem. It requires
computing the inversion count of the permutation, which can be done in O(N log N) (e.g. using a segment
tree / Fenwick tree / order statistics tree or using merge sort). The only difficulty is – since there are
repetitions in the arrays – that the permutation that transforms s(A) into s(B) is not unique. However,
it’s easy to see that if we preserve the relative order of equal elements, the inversion count will be minimal.

strangeoperation Author: Péter Gyimesi Page 9 of 9

https://www.geeksforgeeks.org/inversion-count-in-array-using-merge-sort/

	Tuscan Peaks (peaks)
	Duplicated Usernames (usernames2)
	Largest Rectangle (rectangle)
	Swapping Brackets (bracketswap)
	Excellent Numbers 2 (excellent2)
	Dog Trick Competition (dogtrick)
	Stefan's New Year's resolutions (manymax)
	Carry Bit (carry)
	Strange Operation (strangeoperation)

