
Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. excellent • EN

Excellent Numbers (excellent)
Author: László Nikházy

Developer: Carlo Collodel

Solution
For N = 1 there is no excellent number, as the two candidates 1 and 5 are not divisible by 3.

Otherwise, it is not difficult to construct one: recall that a number is divisible by 3 if and only if the sum
of its digits is divisible by 3. This means that by appending 15 to an excellent number, we get a new
excellent number.

Specifically:
For even N : 15, 1515, 151515, 15151515, . . . are excellent.
For odd N (N > 1): 555, 55515, 5551515, 555151515, . . . are excellent.

excellent Author: László Nikházy Page 1 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. avg • EN

Precise Average (avg)
Author: Áron Noszály

Developer: Áron Noszály

Solution
First for easier analysis: consider the sum of the prices, not the average. To have an average of K it
means that the sum of prices is N · K. Now there are a few cases:

• If ∑i Pi = N · K we already have an average of K, so the answer is 0.

• If ∑i Pi < N · K we can just change one price (increase it by N · K −
∑

i Pi), so the answer is 1.

• If ∑i Pi > N · K we must decrease some prices, but the crux of the problem lies here: they must
remain positive. It’s easy to see that we can be greedy. We can look at the largest current price
P ∗ and decrease it by min(∑i Pi − N · K, P ∗ − 1). We can perform this operation until the sum of
prices is N · K. Naively this algorithm takes O(N2) time, but of course, we can sort the prices in
advance so it becomes O(N log N).

avg Author: Áron Noszály Page 2 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. pingpong • EN

Ping-pong (pingpong)
Author: Zsolt Németh

Developer: Stefan Dascalescu

Solution
The main idea of the solution is to greedily assign the scores to each player in such a way that the first
player wins. We can fix the number of sets we want to use and the idea is to give the first i − 3 sets to
the second player and the last 3 sets to the winner.

Once we distributed the wins, we can check if we can distribute in each set at most 10 points in order to
fulfill the constraints asked. For further details, refer to the sample implementation below.

1 def solve(A, B):
2 #3:
3 if A==33 and B <=30:
4 print (11, B//3)
5 B -= B//3
6 print (11, B//2)
7 B -= B//2
8 print (11, B)
9 return

10 #4:
11 if 33<=A <=43 and 11<=B <=41:
12 B -= 11
13 print(A-33, 11)
14 print (11, B//3)
15 B -= B//3
16 print (11, B//2)
17 B -= B//2
18 print (11, B)
19 return
20 #5:
21 if 33<=A <=53 and 22<=B <=52:
22 A -= 33
23 B -= 22
24 print(A//2, 11)
25 A -= A//2
26 print(A ,11)
27 print (11, B//3)
28 B -= B//3
29 print (11, B//2)
30 B -= B//2
31 print (11, B)
32 return
33 print(" -1 -1")
34 return

pingpong Author: Zsolt Németh Page 3 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. brackets • EN

Baby Bob’s Bracket Sequence (brackets)
Author: Áron Noszály

Developer: Áron Noszály

Solution
Let’s revisit the classical algorithm of deciding whether a given string of brackets is a valid bracket
sequence or not. In that algorithm, we maintain a counter and loop through the elements of the string
from left to right. If the current element of the string is an opening bracket we increase the counter by
one, if it’s a closing bracket we decrease the counter by one. The string is valid if and only if the counter
is 0 at the end, and at no point it was negative.

From this as inspiration, we can deduce an O(N ∑
Ai) dynamic programming algorithm to solve the

problem. Let f(i, j) be true if it’s possible to have the counter at j, if we only run the algorithm on C’s
first A1 + A2 + . . . + Ai characters. The base cases are the following: f(0, 0) = true and f(0, j) = false
for any j ̸= 0. The transition is:

f(i, j) = f(i − 1, j − Ai) ∨ f(i − 1, j + Ai)

(where ∨ is the binary or operator)

We have a solution if f(N, 0) is true. You can get a possible construction by the usual means (storing a
parent for each state along the f values).

brackets Author: Áron Noszály Page 4 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. binarychess • EN

Binary Chess (binarychess)
Author: Áron Noszály

Developer: Bernard Ibrahimcha

Solution
Let’s consider a graph where the vertices are the occupied cells and there’s an edge between two vertices
if the respective cells are in the same row, or the same column or the same diagonal. Now if we look at a
connected component in this graph, we can see that there can’t be both a rook and a bishop in it. Why?
If there’s both a rook and a bishop, then there should also be a rook and a bishop that are connected
by an edge with no other occupied cells between them (you can prove this by contradiction). But that
couldn’t happen because in that case either the rook attacks the bishop (if the edge is here because of a
row or column), or the bishop attacks the rook (if the edge is here because of a diagonal).

Thus in every connected component we can decide if we place only rooks or only bishops. So the answer
is 2cc where cc is the number of connected components.

It’s easy to find the connected components naively in O(N2), but we can do better. Notice there’s only
O(N) that actually matter. Let’s sort the occupied cells by row indices, column indices, sum of row and
column indices and difference of row and column indices. Then in each of these orders, we only need to
add edges between some adjacent elements. The connected components themselves can be found with a
simple depth first search or union-find data structure.

The overall time complexity is dominated by the sorting, so it is O(N log N).

Figure 1: On the left you can see the edges from the 4 different orderings, and on the right the connected
components.

binarychess Author: Áron Noszály Page 5 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. barbarian • EN

Destroy the village (barbarian)
Author: Tommaso Dossi

Developer: Tommaso Dossi

Solution

Subtask 2: Since N is small, it suffices to simulate the process for each starting point. Every time we destroy
a house, we mark it as destroyed and look for the closest unmarked house. This takes O(N3) time.

Subtask 3: We can again simulate the process, but we need to find the closest house in O(1). Notice that the
destroyed houses always form an interval, with the one destroyed last being one of the extremes of
this interval. Hence the closest undestroyed house is one of the two bordering the interval.

Subtask 4: To simplify the explanation, we will now suppose that the house are arranged in a line going from
left to right, with the shore being on the left. Let’s define a direction change in our simulation as
the moment the last destroyed house changes from being the leftmost to being the rightmost, or
vice versa.
Let’s suppose that the last house we destroyed is house l, which also is the leftmost destroyed
house, the rightmost being house r and that the next house to be destroyed is r + 1. Hence
Dr+1 − Dl < Dl − Dl−1.
After another direction change, the leftmost and rightmost destroyed houses will be l′ < l and
r′ > r. We have that:

Dr′ − Dl′ ≥ Dr+1 + Dl−1 = Dr+1 − Dl + Dl − Dl−1 > 2(Dr+1 − Dl) > 2(Dr − Dl)

Every two direction changes, the width of the interval is at least doubled. Hence, there are at most
O(log(DN−1 − D0)) direction changes.
Now, given our interval [l, r] of destroyed houses, the last being house l, we need to find when the
next direction change happens, i.e. how many houses to the left of l we destroy before destroying
house r + 1. We define Pi as the smallest j such that Dj − Di ≥ Di − Di−1, for each 0 < i < N . If
no such j exists for some i, Pi := i.
We notice that the next destroyed point will be l − 1 if and only if Pl > r, since

Dl − Dl−1 ≤ Dr+1 − Dl ⇐⇒ Pl ≥ r + 1

We can find the maximum i < l such that Pi ≤ r +1 in O(log N) using a binary search and a sparse
table. Note that we also have to handle the direction change, from right to left, but it is almost
identical to what we have shown. This solution handles each direction change in O(log N) and for
each starting point there are at most O(log(DN−1 − D0)) direction changes. The complexity is
O(N log N log(DN−1 − D0)).

Subtask 5: Let’s call p(i) the first house where we change direction if we start from house i. Let’s assume
without loss of generality that p(i) < i, we know by definition of p(i) that Dp(i) − Dp(i)−1 >
Di+1 − Dp(i), then for every j such that Dp(i) ≤ Dj ≤ Di we have Dj − Dp(i)−1 > Di+1 − Dj . This
means that the path starting from p(i) will move to the right at least until it surpasses i, at this
point both paths, starting from i and starting from p(i) will have destroyed the interval [p(i), i + 1]
and the barbarian will be at position Di+1, since the state is the same both paths will continue in
the same way, thus the path starting from house p(i) is a suffix of the path starting from house i.
If we can compute p(i) we can solve the problem using a recursive function with memorization.

barbarian Author: Tommaso Dossi Page 6 of 11



We first compute p(i) only for is such that p(i) < i, we iterate from 0 to n − 1 and we keep a
stack s of candidates for p(i). If the barbarian starting at i goes right we do nothing, if he goes left
we know he can only change direction on an element of s so he will reach x, the top of s. After
reaching x the barbarian will go left if and only if Dx − Dx−1 ≤ Di+1 − Dx. If the barbarian goes
right then p(i) = x, if the barbarian goes left we pop x from s, x won’t be a candidate for any p(j)
with j > i because Dx − Dx−1 ≤ Di+1 − Dx ≤ Dj+1 − Dx, then we can check the next element on
top of s. After processing element i we push i onto s and we proceed to i + 1. Similarly we can
compute p(i) for is such that p(i) > i.
The time complexity of the algorithm is linear.

barbarian Author: Tommaso Dossi Page 7 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. periodicwords • EN

Periodic Words (periodicwords)
Author: Péter Gyimesi

Developer: Alexandru Lorintz

Solution
The key ingredient is polynomial hashing. We assign a polynomial to the string A = a0a1a2 . . . an−1:

H(A) = a0 + a1b + a2b2 + . . . + an−1bn−1

Now if we assign different random integers to characters, and the base b this H(A) become an integer
for any string A. Since it can get very large, we rather compute it modulo a large prime p. It is well
known, that if A and B are different strings then H(A) = H(B) with only approximately probability 1

p .
For making debugging easier we usually assign character ch the integer ch − ’a’ + 1, assign b the integer
29 or 31, and compute everything modulo 109 + 7 or 109 + 9.

We can precompute the powers of b modulo p and the prefix hash vector

h = [0, H(A[0 . . . 0]), H(A[0 . . . 1]), H(A[0 . . . 2]), . . . , H(A[0 . . . n − 1])]

in O(N) time (we store everything modulo p). Now the hash value of a substring H(A[l . . . r]) ≡
H(A[0 . . . r]) − H(A[0 . . . l − 1]) ≡ h[r + 1] − h[l] (mod p) can be computed in O(1) time.

We have that A[a . . . b] = A[c . . . d] (a ≤ c) with high probability if

H(A[a . . . b]) · bc−a ≡ H(A[c . . . d]) mod p

Finally for query li, ri we need the divisors of ri − li + 1. It is better to precompute it for every possible
length with the Sieve of Eratosthenes in O(N log(N)) time:

vector<int> divs[100001];
for (int i = 1; i <= N/2; ++i) {

for (int j = 2 * i; j <= N; j += i) {
divs[j].emplace_back(i);

}
}

Now we go through all divisors d | ri − li + 1. The last trick is not to compare all ri−li+1
d substrings, just

two: A[ri . . . (li − d)] and A[(ri + d) . . . li].

periodicwords Author: Péter Gyimesi Page 8 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. longchain • EN

Long Chain (longchain)
Author: Péter Gyimesi

Developer: Alexandru Lorintz

Solution
The first thing we should notice is that if we can split the edges in such a way that the length of the
shortest chain is at least l, then we can definitely split the edges in such a way so that the length of the
shortest chain is at least l − 1. So, what this means is that we can find the biggest value of l such that
we can split the edges so that the length of the shortest chain is l using binary search.

Now, for a fixed value of l we want to know if we can split the edges in such a way so that each chain
has a length of at least l.

For a given node (call it u) that has k children we just need to know the length of the chain going up
from each children of u. Note the length of the chain going up from the ith child of u with vi. We just
need to pair those chains in such a way so that every chain has a length of at least l and the length of
the chain going up from u (if any) is as big as possible. We will have two cases, depending on the parity
of k. For both of these cases, we will consider v to be sorted in increasing order.

k is odd: In this case, we will make k−1
2 pairs and propagate one chain up. So, we will have to pair

v0 with vk−1, v1 with vk−2 and so on, until we reach an index i that we will want to skip, in order to
propagate the ith chain to the father of u. We will want i to be as big as possible. We can see that if we
can choose to exclude the ith chain and still be able to pair all the other values in a way so that all the
pairs have a sum of at least l, than we can exclude the i − 1th chain and still be able to pair up the other
chains. Knowing this, we can just binary search the rightmost index i such that we can pair up all the
other values, so that each of the k−1

2 chains have a length of at least l.

k is even: In order to maximize the length of the chain we will want to propagate, we will try to make
only k

2 −1 pairs. We can only do that if we already have a chain whose length is at least l. We can choose
not to pair this chain with any other and solve the problem only considering the other k − 1 chains. (in
this case, we just need to solve the “k is odd” case). If we cannot find such a chain or we cannot pair the
other k − 1 values, we will just try to make k

2 chains, pairing v0 with vk−1, v1 with vk−2 . . ..

The time complexity for the solution above is O(N · log2 N).

longchain Author: Péter Gyimesi Page 9 of 11



Kódkupa 2023-24 – IIOT Válogatóverseny �����

Első forduló megoldások (angol), 2023. november 13. areaunderpath • EN

Area Under Path (areaunderpath)
Author: Péter Csorba

Developer: Bence Deák

Solution

Subtask 2: As we have at most
(20

10
)

= 184 756 different paths: brute force is enough here.

Subtask 3: Let f(N, M, P, R) denote the solution (the number of different paths with area ≡ R (mod P )).
Considering the last step we get that

f(N, M, P, R) = f(N, M − 1, P, R) + f(N − 1, M, P, (R − M)%P )

if N, M ≥ 1. Moreover f(0, M, P, 0) = f(M, 0, P, 0) = 1, and if R ̸= 0 f(0, M, P, R) =
f(M, 0, P, R) = 0. So this subtask can be done by dynamic programming in O(N · M · P ) time
(make sure that you store every number modulo 109 + 7).

Subtask 4: Let N = n · P , and M = m · P . There is a formula (see proof below) for the solution this case!
If R = 0:

f(N, M, P, 0) =
(N+M

N

)
−
(n+m

n

)
P

+
(

n + m

n

)
If R ̸= 0:

f(N, M, P, R) =
(N+M

N

)
−
(n+m

n

)
P

As
(a

b

)
= a!

b!·(a−b)! , and we want the answer modulo 109 + 7: we need to pre-compute factorials
modulo 109 + 7 and compute modular multiplicative inverses of those we need (O(N + M)).

Subtask 5: Let N = n · P + RN , and M = m · P + RM . Using the previous tasks and the proof: We have

ALL =
(

N + M

N

)

different path. And the BAD ones are those paths going through A = (n · P, m · P ), but getting
there with (0, P ) or (P, 0) steps. From A to (N, M) we get by an RN ×RM rectangle:

BAD =
(

n + m

n

)
·
(

RN + RM

RN

)
.

Now ALL − BAD contributes evenly to all remainder classes. Any BAD path until point A have
area divisible by P (even by P 2). The area under a BAD path modulo P only depends on the
A → (N, M) part. This means:

f(N, M, P, R) = ALL − BAD

P
+
(

n + m

n

)
· f(RN , RM , P, R)

which can be computed in O(N + M + P 3) as described in the previous tasks.

areaunderpath Author: Péter Csorba Page 10 of 11



Proof: The main idea is to partition many paths to groups of size P such that inside a group they have
different area modulo P . After that we can deal with the rest.
A (0, 0) → (N, M) path can be encoded to a string of length N + M , for each step to the right we
write ’r’, for each step up we write ’u’. This string consist the character ’r’ N times, and ’u’ M
times: this is why we have

(N+M
N

)
different paths.

Let pick a path from (0, 0) → (N, M). We look at the corresponding ’u,r’ string, and assume that
we have P consecutive letters such that they are not the same, i.e. this substring of length P is
not uu . . . u nor rr . . . r. By cyclically shifting this block we get P different1 (0, 0) → (N, M) path.

. . . ururr . . .

→

. . . rurru . . .

→

. . . urrur . . .

→

. . . rruru . . .

→

. . . rurur . . .

→

Figure 1: Example for cyclic shifts for P = 5.

Now we look at the length P cyclically shifted part. Since cyclic shift does not change the number
of characters, this part is a path from (x, y) to (x + a, y + b), where a + b = P , a, b ̸= 0. When u
in the front is shifted to the end of this substring, the area is decreased by a (see blue rectangles).
When r in the front is shifted to the end of this substring, the area is increased by b (see green
rectangles). Since −a ≡ b (mod P ) each cyclic shift changes the area by the same amount modulo
P : the P cyclically shifted paths have different area modulo P (and hence they are different).
Going back to Subtask 4: Now N = n · P , and M = m · P . We cut the string of length N + M
into n + m substring of length P . We pick the first (from left) which contains both u and v. By
cyclically shifting this substring we get all area classes modulo P . We can not do this when all
substring contains only u or v. By replacing these length P blocks by a single letter of it we get a
new path from (0, 0) to (n, m). So we have

(n+m
n

)
BAD paths, but the are under them is divisible

by P . We have ALL =
(N+M

N

)
paths, this gives the answer for R! = 0: ALL−BAD

P and for R = 0:
ALL−BAD

P + BAD.

1We need here that P is prime!

areaunderpath Author: Péter Csorba Page 11 of 11


	Excellent Numbers (excellent)
	Precise Average (avg)
	Ping-pong (pingpong)
	Baby Bob's Bracket Sequence (brackets)
	Binary Chess (binarychess)
	Destroy the village (barbarian)
	Periodic Words (periodicwords)
	Long Chain (longchain)
	Area Under Path (areaunderpath)

