

Budapest, 2024. március 10.

sumpartition • EN

Walking In The Park (sumpartition)

Bence is casually walking in the park when he stumbles over something. When he looks down he is stunned, he stumbled over two arrays!

Figure 1: Bence after stumbling over the arrays.

The first array A contains N integers while the second array B contains M **positive** integers. Bence wants to take revenge on the arrays and destroy them. However, he wants to destroy them in a very specific way: he wants to split each array into K non-empty contiguous subarrays, such that the sum of elements within each corresponding pair of subarrays is precisely the same.

More formally, Bence wants to partition A into subarrays X_0, \ldots, X_{K-1} and B into subarrays Y_0, \ldots, Y_{K-1} , such that the sum of elements in X_i equals the sum of elements in Y_i for each $i = 0 \ldots K-1$. Help Bence to find such a partition, or tell him if it is impossible.

Input

The input file consists of:

- a line containing integers N, M, K.
- a line containing the N integers A_0, \ldots, A_{N-1} .
- a line containing the M integers B_0, \ldots, B_{M-1} .

Output

If there exists a suitable partition, the output file must contain two lines:

- a line containing K-1 integers: the starting indices of the subarrays X_1, \ldots, X_{K-1} .
- a line containing K-1 integers: the starting indices of the subarrays Y_1, \ldots, Y_{K-1} .

If there is no suitable partition, you have to **print a single line** containing -1.

sumpartition Page 1 of 2

Constraints

- $2 \le N, M \le 200000$.
- $2 \le K \le \min(N, M)$.
- $-10^{12} \le A_i \le 10^{12}$ for each $i = 0 \dots N 1$.
- $1 \le B_i \le 10^6$ for each $i = 0 \dots M 1$.

Scoring

Your program will be tested against several test cases grouped in subtasks. In order to obtain the score of a subtask, your program needs to correctly solve all of its test cases.

- Subtask 1 (0 points) Examples.

- Subtask 2 (19 points) $A_i > 0$ for each $i = 0 \dots N - 1$.

- Subtask 3 (23 points) $N, M \le 100$.

- Subtask 4 (16 points) $N, M \le 1000$.

- Subtask 5 (42 points) No additional limitations.

Examples

input	output
5 4 3 1 3 6 -3 9 1 9 2 4	1 3 1 2
5 4 3 2 3 6 -3 9 1 10 2 4	-1

Explanation

In the first sample case, Bence has to partition A into [1], [3,6], [-3,9] and B into [1], [9], [2,4].

In the **second sample case**, there is no way to split both arrays into 3 subarrays each such that the sequences of their sums are equal.

sumpartition Page 2 of 2