Budapest，2024．március 10.

Modern Art（squareunion）

Alice decided to create a piece of modern art．She has N squares，numbered from 0 to $N-1$ ．She placed them along the x axis，such that their centers lie on the x axis．The sides of the squares are parallel to the x and y axes．Some squares may overlap．

Figure 1：Modern art according to Alice．

For each square i ，Alice tells you the x coordinate X_{i} of its center，and the distance R_{i} between its center and its sides．Please note that the side length of square i is $2 R_{i}$ ．For example，the square with $X=4$ and $R=3$ is colored in red，and the square with $X=8$ and $R=2$ is colored in orange in the above figure．

Your task is to compute the total area covered by Alice＇s N squares．
［帠 Among the attachments of this task you may find a template file squareunion．＊with a sample incomplete implementation．

Input

The input file consists of：
－a line containing integer N ：the number of the squares．
－a line containing the N integers X_{0}, \ldots, X_{N-1} ：the x coordinates of the centers of the squares．
－a line containing the N integers R_{0}, \ldots, R_{N-1} ：the distance between the center and the sides of each square．

Output

The output file must contain a single line consisting of a 64 －bit integer：the area of the union of the squares．

Constraints

－ $1 \leq N \leq 100000$ ．
－ $1 \leq X_{i} \leq 1000000000$ for each $i=0 \ldots N-1$ ．
－ $1 \leq R_{i} \leq 1000000$ for each $i=0 \ldots N-1$ ．

Scoring

Your program will be tested against several test cases grouped in subtasks．In order to obtain the score of a subtask，your program needs to correctly solve all of its test cases．
－Subtask 1 （0 points）
Examples．
틉ㅂ․ㅂㅂ․․․
－Subtask 2 （5 points）$\quad R_{i}=1$ and X_{i} is odd for each $i=0 \ldots N-1$ ．

目回四四目

－Subtask 3 （15 points）$\quad N \leq 100$ and $R_{i} \leq 100, X_{i} \leq 1000$ for each $i=0 \ldots N-1$ ．
可四四目星
－Subtask 4 （30 points）$\quad N \leq 1000$ and $R_{i} \leq 500, X_{i} \leq 10^{6}$ for each $i=0 \ldots N-1$ ．

－Subtask 5 （50 points）No additional limitations．

四四回旦

Examples

input	output
$\begin{array}{lllll} 5 & & & & \\ 4 & 4 & 10 & 8 & 1 \\ 3 & 1 & 1 & 2 & 1 \end{array}$	52
$\begin{array}{lllll} 5 & & & & \\ 1 & 5 & 9 & 7 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array}$	16

Explanation

The first sample case corresponds to the picture in the task description above．The area of the union of the squares is 52 ．

In the second sample case the area is 16．It is displayed in the picture below．Note that the leftmost （blue）area is covered twice，both by square 0 and square 4 ．

