John＇s Gardening Invention（gardening）

John the programmer is burnt out after working in the IT sector for so long，so he started to learn about gardening．The current topic he＇s focusing on is titled＂The watering of plants＂．

Figure 1：No more manual labor！

John created a watering system which can be modeled as a rooted tree graph，consisting of N junctions （numbered from 0 to $N-1$ ）and $N-1$ pipes．Each pipe connects two different junctions，and it is possible to get from any junction to any other junction through the pipes．There＇s a main junction where the water is pumped into the system．

The layout of the system can be described by N integers：$P_{0}, P_{1}, \ldots, P_{N-1}$ ，where $P_{i}=-1$ if junction i is the main junction，otherwise there＇s a pipe connecting junctions i and P_{i} ．

Every junction has one of two possible states：open or closed，which can be toggled by rotating a valve at the junction．Initially，junction i is in state S_{i} ．The cost of toggling the state of junction i is C_{i} ．The water will reach a junction if every junction on the path from the main junction to it is open．

John has put plants at every junction $x(0 \leq x \leq N-1)$ for which there＇s no junction j having $P_{j}=x$ ． The water requirements of plants are different：some must be watered，some must not be．

John has Q queries：in the i－th one he gives you the indices $A_{1}, A_{2}, \ldots, A_{M_{i}}$ of M_{i} junctions with plants． You should answer these queries by calculating the minimum cost to change the states of the junctions， so that all these plants are watered，but no other plant is．All queries are independent，i．e．，the state of the junctions don＇t change after a query．

Among the attachments of this task you may find a template file gardening．＊with a sample incomplete implementation．

Input

The first line contains two integer N and Q ．
The second line contains N integers：$P_{0}, P_{1}, \ldots, P_{N-1}$ ，the description of the watering system． The third line contains N integers：$C_{0}, C_{1}, \ldots, C_{N-1}$ ，the cost to change the state of each junction．

The fourth line contains N integers：$S_{0}, S_{1}, \ldots, S_{N-1}$ ，the initial state of each junction（ 1 if open， 0 if closed）．

The next $2 Q$ lines contain the description of the queries．The $(2 i-1)$－th line contains M_{i} and the（ $2 i$ ）－th contains：$A_{i, 1}, A_{i, 2}, \ldots, A_{i, M_{i}}$ ，the indices of junctions with plants that should be watered．

Output

You need to write Q integers，each on a separate line：the answers to queries．

Constraints

－ $2 \leq N \leq 200000$ ．
－ $1 \leq Q \leq 200000$ ．
－$-1 \leq P_{i} \leq N-1$ for all $0 \leq i \leq N-1$ and there＇s only one node with $P_{i}=-1$ ．
－ $1 \leq C_{i} \leq 10^{9}$ for all $0 \leq i \leq N-1$ ．
－$S_{i}=0$ or $S_{i}=1$ for all $0 \leq i \leq N-1$ ．
－$M_{i}<N$ and $\sum M_{i} \leq 500000$ ．
－ $0 \leq A_{i, j} \leq N-1$ for all $1 \leq j \leq M_{i}$ ．
－$A_{i, j}$ is a junction with a plant．

Scoring

Your program will be tested against several test cases grouped in subtasks．In order to obtain the score of a subtask，your program needs to correctly solve all of its test cases．
－Subtask 1 （0 points）Examples．
可団回回
－Subtask 2 （8 points）$\quad N \leq 3$ and $\sum M_{i} \leq 10$ ．

回回可回

－Subtask 3 （11 points）$\quad N \leq 16$ and $\sum M_{i} \leq 256$ ．

回団団回

－Subtask 4 （30 points）$\quad N \leq 5000$ and $\sum M_{i} \leq 10000$ ．可可可回
－Subtask 5 （51 points）No additional limitations．

Examples

input	output
73	11
$\begin{array}{llllllll}-1 & 0 & 0 & 1 & 1 & 2 & 2\end{array}$	13
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$	23
$\begin{array}{lllllll}0 & 1 & 1 & 0 & 1 & 0 & 1\end{array}$	
4	
3456	
1	
3	
2	
35	

Explanation

The initial state of the system is displayed below. Green nodes are junctions with plants, and the grey node is the main junction. Dotted nodes represent closed junctions, the others junctions are open.

In the first query, junctions $3,4,5$ and 6 must be watered. For this, all (initially closed) junctions should be opened for a cost of $1+4+6=11$.

In the second query, only junction 3 must be watered. Junctions 0 and 3 should be opened, while 2 and 4 should be closed to prevent the watering of any other plant. The total cost is $1+4+3+5=13$. Note that closing junction 6 instead of junction 4 achieves the same goal, but at a higher cost.

